Dynamic modeling and optimal fed-batch feeding strategies for a two-phase partitioning bioreactor

Author(s):  
Susan M. Cruickshank ◽  
Andrew J. Daugulis ◽  
P. James McLellan
2012 ◽  
Vol 88 (1) ◽  
pp. 119-125 ◽  
Author(s):  
Julianne Ouellette ◽  
Silvia Cristina Cunha dos Santos ◽  
François Lépine ◽  
Pierre Juteau ◽  
Eric Déziel ◽  
...  

2017 ◽  
Vol 117 ◽  
pp. 31-38 ◽  
Author(s):  
Thi-vi-na Nguyen ◽  
Alfredo Santiago Rodriguez Castillo ◽  
Solène Guihéneuf ◽  
Pierre-François Biard ◽  
Ludovic Paquin ◽  
...  

2005 ◽  
Vol 52 (8) ◽  
pp. 265-271 ◽  
Author(s):  
R. Muñoz ◽  
C. Rolvering ◽  
B. Guieysse ◽  
B. Mattiasson

The aerobic degradation of phenanthrene by a Pseudomonas migulae strain under classical mechanical aeration and under photosynthetic oxygenation (using a Chlorella sorokiniana strain) in a two-phase partitioning bioreactor (TPPB) constructed with silicone oil as organic phase was investigated. When traditional mechanical aeration was used, an increase in the aeration and/or in the agitation rate enhanced phenanthrene biodegradation. Thus, phenanthrene removal rates (based on the total liquid volume of cultivation) ranged from 22±1 to 36±2mg/lh at 100rpm and 1vvm and 400rpm and 3vvm, respectively. On the other hand, during phenanthrene biodegradation using the algal-bacterial microcosm a maximum rate of 8.1±1.2mg/lh at 200rpm and 8000 lux of illuminance was achieved.


Sign in / Sign up

Export Citation Format

Share Document